Part Number Hot Search : 
02M10 SJB1449 ACTF1M32 0022122 PQ208 MAX3081E B123Y 229002
Product Description
Full Text Search
 

To Download 4305 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Product Specification
PE4305
Product Description
The PE4305 is a high linearity, 5-bit RF Digital Step Attenuator (DSA) covering a 15.5 dB attenuation range in 0.5 dB steps, and is pin compatible with the PE430x series. This 50-ohm RF DSA provides both parallel (latched or direct mode) and serial CMOS control interface, operates on a single 3-volt supply and maintains high attenuation accuracy over frequency and temperature. It also has a unique control interface that allows the user to select an initial attenuation state at power-up. The PE4305 exhibits very low insertion loss and low power consumption. This functionality is delivered in a 4x4 mm QFN footprint. The PE4305 is manufactured in Peregrine's patented Ultra Thin Silicon (UTSi(R)) CMOS process, offering the performance of GaAs with the economy and integration of conventional CMOS. Figure 1. Functional Schematic Diagram
Switched Attenuator Array RF Input RF Output
50 RF Digital Attenuator 5-bit, 15.5 dB, DC - 4.0 GHz Features * Attenuation: 0.5 dB steps to 15.5 dB * Flexible parallel and serial programming interfaces * Latched or direct mode * Unique power-up state selection * Positive CMOS control logic * High attenuation accuracy and linearity over temperature and frequency * Very low power consumption * Single-supply operation * 50 impedance * Pin compatible with PE430x series * Packaged in a 20 Lead 4x4 mm QFN Figure 2. Package Type
4x4mm -20 Lead QFN
Parallel Control Serial Control Power-Up Control
6
3
Control Logic Interface
2
Table 1. Electrical Specifications @ +25C, VDD = 3.0 V
Parameter
Operation Frequency Insertion Loss
2
Test Conditions
Frequency
Minimum
DC
Typical
Maximum
4000
Units
MHz dB dB dBm dBm dB s
DC - 2.2 GHz Any Bit or Bit Combination DC - 2.2 GHz 1 MHz - 2.2 GHz Two-tone inputs +18 dBm 50% control to 0.5 dB of final value 1 MHz - 2.2 GHz DC - 2.2 GHz
30 15 -
1.5 34 52 20 -
2.25 (0.25 + 3% of atten setting) not to exceed 0.4 dB 1
Attenuation Accuracy 1 dB Compression3 Input IP3
1, 2
Return Loss Switching Speed
Notes: 1. Device Linearity will begin to degrade below 1Mhz 2. See Max input rating in Table 2 & Figures on Pages 2 to 4 for data across frequency. 3. Note Absolute Maximum in Table 3. Document No. 70/0159~02C www.psemi.com (c)2005 Peregrine Semiconductor Corp. All rights reserved. Page 1 of 11
PE4305
Product Specification
Typical Performance Data (25C, VDD=3.0 V) Figure 3. Insertion Loss Figure 4. Attenuation at Major steps
0
20
-1 Normalized Attenuation (dB) 15
15.5 dB
Insertion Loss (dB)
-2
10
8 dB
-3 insertion loss @ 25 C insertion loss @ -40 C insertion loss @ 85 C
5
4 dB 2 dB 1 dB .5 dB
-4
-5 0 500 1000 1500 2000 2500 3000 3500 4000
0 0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (MHz)
Frequency (MHz)
Figure 5. Input Return Loss at Major Attenuation Steps
0
Figure 6. Output Return Loss at Major Attenuation Steps
0
-10
-10
S11 (dB)
8 dB
-30
S22 (dB)
-20
-20
15.5 dB
-30
15.5 dB
-40 -40
-50 0 500 1000 1500 2000 2500 3000 3500 4000
-50 0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (MHz)
Frequency (MHz)
(c)2005 Peregrine Semiconductor Corp. All rights reserved. Page 2 of 11
Document No. 70/0159~02C UltraCMOSTM RFIC Solutions
PE4305
Product Specification
Typical Performance Data (25C, VDD=3.0 V) Figure 7. Attenuation Error Vs. Frequency Figure 8. Attenuation Error Vs. Attenuation Setting at 10 MHz and 510 MHz
0.6
0.2
0.4
0
0.2
-0.2
Error (dB)
Error (dB)
-0.4
0 10 MHz @ 25 C 510 MHz @ 25 C 10 MHz @ -40 C 510 MHz @ -40 C 10 MHz @ 85 C 510 MHz @ 85 C
15.5 dB
-0.6
-0.2
-0.8
-0.4
-1 0 500 1000 1500 2000 2500 3000 3500 4000
-0.6 0 2 4 6 8 10 12 14 16
Frequency (MHz)
Attenuation State (dB)
Figure 9. Attenuation Error Vs. Attenuation Setting 1010 MHz and 1210 MHz
0.6
Figure 10. Attenuation Error Vs. Attenuation Setting at 1510 MHz and 2010 MHz
0.6
0.4
0.4
0.2 Error (dB) Error (dB)
0.2
0
0
-0.2
-0.4
1010 MHz @ 25 C 1010 MHz @ -40 C 1010 MHz @ 85 C 1210 MHZ @ 25 C 1210 MHz @ -40 C 1210 MHz @ 85 C
-0.2
-0.4
1510 MHz @ 25 C 1510 MHz @ -40 C 1510 MHz @ 85 C 2010 MHz @ 25 C 2010 MHz @ -40 C 2010 MHz @ 85 C
-0.6 0 2 4 6 8 10 12 14 16
-0.6 0 2 4 6 8 10 12 14 16
Attenuation State (dB)
Attenuation State (dB)
Document No. 70/0159~02C www.psemi.com
(c)2005 Peregrine Semiconductor Corp. All rights reserved. Page 3 of 11
PE4305
Product Specification
Typical Performance Data (25C, VDD=3.0 V) Figure 11. Attenuation Error vs. Attenuation Setting at 2010 MHz and 2510 MHz
0.6
Figure 12. 1 dB Compression vs. Frequency
40
0.4 35 0.2 Error (dB) 1 dB Compression (dBm)
0 2010 MHz @ 25 C 2510 MHz @ 25 C 2010 MHz @ -40 C 2510 MHz @ -40 C 2010 MHz @ 85 C 2510 MHz @ 85 C
30
-0.2
25
-0.4
0 dB 0.5 dB 1 dB 2 dB
-0.6 0 2 4 6 8 10 12 14 16
20 1000 1500 2000 Frequency (MHz) 2500 3000
Attenuation State (dB)
Figure 13. Input IP3 vs. Frequency
60 55 50 45 IP3 (dBm) 40 35 30 25 20 500 1000 1500 2000 2500 3000 0 dB 0.5 dB 1 dB 2 dB 4 dB 8 dB 15.5 dB
Frequency (MHz)
(c)2005 Peregrine Semiconductor Corp. All rights reserved. Page 4 of 11
Document No. 70/0159~02C UltraCMOSTM RFIC Solutions
PE4305
Product Specification
Figure 14. Pin Configuration (Top View)
GND C0.5 C1 C2 C4
Table 3. Absolute Maximum Ratings
Symbol
VDD VI
Parameter/Conditions
Power supply voltage Voltage on any input Storage temperature range Operating temperature range Input power (50 ) ESD voltage (Human Body Model)
Min
-0.3 -0.3 -65 -40
Max
4.0 VDD+ 0.3 150 85 24 500
Units
V V C C dBm V
20
19
18
17
16
C16 RF1 Data Clock LE
1 2 3 4 5 10
15
C8 RF2 P/S Vss/GND GND
TST TOP PIN VESD
20-lead QFN 4x4mm
Exposed Solder Pad
14 13 12 11
6
7
8
9
Table 4. DC Electrical Specifications
Parameter
VDD Power Supply Voltage IDD Power Supply Current Digital Input High 0.7xVDD 0.3xVDD 1
PUP1
PUP2
VDD
VDD
GND
Min
2.7
Typ
3.0
Max
3.3 100
Units
V A V V A
Table 2. Pin Descriptions
Pin No.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Paddle
Pin Name
N/C RF1 Data Clock LE VDD N/C PUP2 VDD GND GND Vss/GND P/S RF2 C8 C4 C2 GND C1 C0.5 GND
Description
No connect. Can be connected to any bias. RF port (Note 1). Serial interface data input (Note 4). Serial interface clock input. Latch Enable input (Note 2). Power supply pin. No connect. Can be connected to any bias. Power-up selection bit. Power supply pin. Ground connection. Ground connection. Negative supply voltage or GND connection(Note 3) Parallel/Serial mode select. RF port (Note 1). Attenuation control bit, 8 dB. Attenuation control bit, 4 dB. Attenuation control bit, 2 dB. Ground connection. Attenuation control bit, 1 dB. Attenuation control bit, 0.5 dB. Ground for proper operation
Digital Input Low Digital Input Leakage
Exposed Solder Pad Connection The exposed solder pad on the bottom of the package must be grounded for proper device operation. Electrostatic Discharge (ESD) Precautions When handling this UltraCMOSTM device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rate specified in Table 3. Latch-Up Avoidance Unlike conventional CMOS devices, UltraCMOSTM devices are immune to latch-up. Switching Frequency The PE4305 has a maximum 25 kHz switching rate. Resistor on Pin 3 A 10 k resistor on the input to Pin 3 (see Figure 16) will eliminate package resonance between the RF input pin and the digital input. Specified attenuation error versus frequency performance is dependent upon this condition.
(c)2005 Peregrine Semiconductor Corp. All rights reserved. Page 5 of 11
Note 1: Both RF ports must be held at 0 VDC or DC blocked with an external series capacitor. 2: Latch Enable (LE) has an internal 100 k resistor to VDD. 3: Connect pin 12 to GND to enable internal negative voltage generator. Connect pin 12 to VSS (-VDD) to bypass and disable internal negative voltage generator. 4. Place a 10 k resistor in series, as close to pin as possible to avoid frequency resonance. See "Resistor on Pin 3" paragraph.
Document No. 70/0159~02C www.psemi.com
PE4305
Product Specification
Programming Options
Parallel/Serial Selection Either a parallel or serial interface can be used to control the PE4305. The P/S bit provides this selection, with P/S=LOW selecting the parallel interface and P/S=HIGH selecting the serial interface. Parallel / Direct Mode Interface The parallel interface consists of five CMOScompatible control lines that select the desired attenuation state, as shown in Table 5. The parallel interface timing requirements are defined by Figure 18 (Parallel Interface Timing Diagram), Table 9 (Parallel Interface AC Characteristics), and switching speed (Table 1). For parallel programming the Latch Enable (LE) should be held LOW while changing attenuation state control values, then pulse LE HIGH to LOW (per Figure 18) to latch new attenuation state into device. For direct programming, the Latch Enable (LE) line should be pulled HIGH. Changing attenuation state control values will change device state to new attenuation. Direct Mode is ideal for manual control of the device (using hardwire, switches, or jumpers).
serially entered into the shift register, a process that is independent of the state of the LE input. The LE input controls the latch. When LE is HIGH, the latch is transparent and the contents of the serial shift register control the attenuator. When LE is brought LOW, data in the shift register is latched. The shift register should be loaded while LE is held LOW to prevent the attenuator value from changing as data is entered. The LE input should then be toggled HIGH and brought LOW again, latching the new data. The start bit (B5) of the data should always be low to prevent an unknown state in the device. The timing for this operation is defined by Figure 17 (Serial Interface Timing Diagram) and Table 8 (Serial Interface AC Characteristics). Power-up Control Settings The PE4305 always assumes a specifiable attenuation setting on power-up. This feature exists for both the Serial and Parallel modes of operation, and allows a known attenuation state to be established before an initial serial or parallel control word is provided. When the attenuator powers up in Serial mode (P/ S=1), the five control bits are set to whatever data is present on the five parallel data inputs (C0.5 to C8). This allows any one of the 32 attenuation settings to be specified as the power-up state. When the attenuator powers up in Parallel mode (P/ S=0) with LE=0, the control bits are automatically set to one of two possible values. These two values are selected by the power-up control bit, PUP2, as shown in Table 6 (Power-Up Truth Table, Parallel Mode).
Table 5. Truth Table
P/S
0 0 0 0 0 0 0
C8
0 0 0 0 0 1 1
C4
0 0 0 0 1 0 1
C2
0 0 0 1 0 0 1
C1
0 0 1 0 0 0 1
C0.5
0 1 0 0 0 0 1
Attenuation State
Reference Loss 0.5 dB 1 dB 2 dB 4 dB 8 dB 15.5 dB
Table 6. Power-Up Truth Table, Parallel Interface Mode
P/S
0 0 0
LE
0 0 1
PUP2
0 1 X
Attenuation State
Reference Loss 8 dB Defined by C0.5-C8
Note: Not all 32 possible combinations of C0.5-C8 are shown in table
Serial Interface The PE4305's serial interface is a 6-bit serial-in, parallel-out shift register buffered by a transparent latch. The latch is controlled by three CMOScompatible signals: Data, Clock, and Latch Enable (LE). The Data and Clock inputs allow data to be
Note: Power up with LE=1 provides normal parallel operation with C0.5-C8, and PUP2 is not active
(c)2005 Peregrine Semiconductor Corp. All rights reserved. Page 6 of 11
Document No. 70/0159~02C UltraCMOSTM RFIC Solutions
PE4305
Product Specification
Evaluation Kit
The Digital Attenuator Evaluation Kit board was designed to ease customer evaluation of the PE4305 DSA. J9 is used in conjunction with the supplied DC cable to supply VDD, GND, and -VDD. If use of the internal negative voltage generator is desired, then connect -VDD (black banana plug) to ground. If an external -VDD is desired, then apply -3V. J1 should be connected to the LPT1 port of a PC with the supplied control cable. The evaluation software is written to operate the DSA in serial mode, so switch 7 (P/S) on the DIP switch SW1 should be ON with all other switches off. Using the software, enable or disable each attenuation setting to the desired combined attenuation. The software automatically programs the DSA each time an attenuation state is enabled or disabled. To evaluate the Power Up options, first disconnect the control cable from the evaluation board. The control cable must be removed to prevent the PC port from biasing the control pins. During power up with P/S=1 high and LE=0 or P/ S=0 low and LE=1, the default power-up signal attenuation is set to the value present on the five control bits on the five parallel data inputs (C0.5 to C8). This allows any one of the 32 attenuation settings to be specified as the power-up state.
J4
Figure 15. Evaluation Board Layout
Figure 16. Evaluation Board Schematic
C0.5 C1 C2 C4
20
19
18
17 C2
C5
C1
1 1 Z=50 Ohm 10 kohm CLK LE 2 3 4 5
GND
C4
16
N/C
C8
15 14 13 12 11
C8 Z=50 Ohm PS 1
J5
During power up with P/S=0 high and LE=0, the control bits are automatically set to one of two possible values presented through the PUP interface. These two values are selected by the power-up control bit, PUP2, as shown in Table 6. Pins 1 and 7 are open and may be connected to any bias. Resistor on Pin 3 A 10 k resistor on the input to pin 3 (Figure 16) will eliminate package resonance between the RF input pin and the digital input. Specified attenuation error versus frequency performance is dependent upon this condition.
RFin DATA CLK
SMA
DATA
U1 QFN4X4
RFout PS VDD_D VNEG GND GND
SMA
N/C
LE
PUP2 8 PUP2
VDD
VCC
100 pF
Note: Resistor on pin 3 is required and should be placed as close to the part as possible to avoid package resonance and meet error specifications over frequency.
Document No. 70/0159~02C www.psemi.com
(c)2005 Peregrine Semiconductor Corp. All rights reserved. Page 7 of 11
10
6
7
9
PE4305
Product Specification
Figure 17. Serial Interface Timing Diagram
LE
Table 7. 5-Bit Attenuator Serial Programming Register Map
Clock
B5 0
B4 C8
B3 C4
B2 C2
B1 C1
B0 C0.5
Data
MSB
LSB
MSB (first in)
LSB (last in)
tSDSUP
tSDHLD
tLESUP
tLEPW
Note: The start bit (B5) must always be low to prevent the attenuator from entering an unknown state.
Figure 18. Parallel Interface Timing Diagram
LE
Parallel Data C8:C0.5
tPDSUP
tLEPW
tPDHLD
Table 8. Serial Interface AC Characteristics
VDD = 3.0 V, -40 C < TA < 85 C, unless otherwise specified Symbol
fClk tClkH tClkL tLESUP tLEPW tSDSUP tSDHLD
Table 9. Parallel Interface AC Characteristics
VDD = 3.0 V, -40 C < TA < 85 C, unless otherwise specified Symbol
tLEPW tPDSUP tPDHLD
Parameter
Serial data clock frequency (Note 1) Serial clock HIGH time Serial clock LOW time LE set-up time after last clock falling edge LE minimum pulse width Serial data set-up time before clock rising edge Serial data hold time after clock falling edge
Min
Max
10
Unit
MHz ns ns ns ns ns ns
Parameter
LE minimum pulse width Data set-up time before rising edge of LE Data hold time after falling edge of LE
Min
10 10 10
Max
Unit
ns ns ns
30 30 10 30 10 10
Note: fClk is verified during the functional pattern test. Serial programming sections of the functional pattern are clocked at 10 MHz to verify fclk specification.
(c)2005 Peregrine Semiconductor Corp. All rights reserved. Page 8 of 11
Document No. 70/0159~02C UltraCMOSTM RFIC Solutions
PE4305
Product Specification
Figure 19. Package Drawing
4.00 INDEX AREA 2.00 X 2.00 -B2.00
2.00 0.25 C -A0.10 C 0.08 C 0.020 0.20 REF EXPOSED PAD & TERMINAL PADS SEATING PLANE 0.80 4.00 -C2.00 TYP 0.50 TYP 0.55 2.00 1.00
5 11
0.435 0.18 1.00 EXPOSED PAD 0.23 1 0.10 CAB 2.00
1 15 20 16 6 10
0.435
0.18
4.00
DETAIL A
DETAIL A
2
1. Dimension applies to metallized terminal and is measured between 0.25 and 0.30 from terminal tip. 2. Coplanarity applies to the exposed heat sink slug as well as the terminals. 3. Dimensions are in millimeters.
Document No. 70/0159~02C www.psemi.com
(c)2005 Peregrine Semiconductor Corp. All rights reserved. Page 9 of 11
PE4305
Product Specification
Figure 20. Marking Specifications
4305 YYWW ZZZZZ
YYWW = Date Code ZZZZZ = Last five digits of PSC Lot Number
Figure 21. Tape and Reel Drawing
Table 10. Ordering Information
Order Code
4305-01 4305-02 4305-00 4305-51 4305-52
Part Marking
4305 4305 PE4305-EK 4305 4305
Description
PE4305-20MLP 4x4mm-75A PE4305-20MLP 4x4mm-3000C PE4305-20MLP 4x4mm-EK PE4305G-20MLP 4x4mm-75A PE4305G-20MLP 4x4mm-3000C
Package
20-lead 4x4mm QFN 20-lead 4x4mm QFN Evaluation Kit Green 20-lead 4x4mm QFN Green 20-lead 4x4mm QFN
Shipping Method
75 units / Tube 3000 units / T&R 1 / Box 75 units / Tube 3000 units / T&R
(c)2005 Peregrine Semiconductor Corp. All rights reserved. Page 10 of 11
Document No. 70/0159~02C UltraCMOSTM RFIC Solutions
PE4305
Product Specification
Sales Offices
United States Peregrine Semiconductor Corp.
9450 Carroll Park Drive San Diego, CA 92121 Tel 1-858-731-9400 Fax 1-858-731-9499
Japan Peregrine Semiconductor K.K.
5A-5, 5F Imperial Tower 1-1-1 Uchisaiwaicho, Chiyoda-ku Tokyo 100-0011 Japan Tel: 011-81-3-3502-5211 Fax: 011-81-3-3502-5213
Europe Peregrine Semiconductor Europe
Batiment Maine 13-15 rue des Quatre Vents F- 92380 Garches, France Tel: 011- 33-1-47-41-91-73 Fax : 011-33-1-47-41-91-73
China Peregrine Semiconductor
28G, Times Square, No. 500 Zhangyang Road, Shanghai, 200122, P.R. China Tel: 011-86-21-5836-8276 Fax: 011-86-21-5836-7652
For a list of representatives in your area, please refer to our Web site at: www.psemi.com
Data Sheet Identification
Advance Information
The product is in a formative or design stage. The data sheet contains design target specifications for product development. Specifications and features may change in any manner without notice. The information in this data sheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk. No patent rights or licenses to any circuits described in this data sheet are implied or granted to any third party. Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications. The Peregrine name, logo, and UTSi are registered trademarks and UltraCMOS is a trademark of Peregrine Semiconductor Corp.
Preliminary Specification
The data sheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product.
Product Specification
The data sheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a DCN (Document Change Notice).
Document No. 70/0159~02C www.psemi.com
(c)2005 Peregrine Semiconductor Corp. All rights reserved. Page 11 of 11


▲Up To Search▲   

 
Price & Availability of 4305

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X